- 分享
- 0
- 人气
- 0
- 主题
- 40
- 帖子
- 615
- UID
- 501781
- 积分
- 657
- 阅读权限
- 17
- 注册时间
- 2012-6-9
- 最后登录
- 2014-7-21
- 在线时间
- 1227 小时
|
本帖最后由 tenkeason 于 2012-11-3 08:23 PM 编辑
第二弹:(已解决) http://www.jbtalks.cc/thread-1311525-1-1.html#.UJS-IWepki4
第一题:(已解决)
It is given that 20 solid metal cylinders each with a radius of 70 cm and a height of 300 cm, are melted to make 50 identical solid spheres.
Find the volume, in cm3, of each solid sphere.
答案:(感谢杰~~~)
(22/7)*70*70*300*20=92400000 cm3
92400000 cm3 / 50 =1848000 cm3
第二题:(已解决)
答案:(感谢a490920)
πR^2=4π (等式方程)得答案2
πR^2=16π(等式方程)得答案4
4/2=2
第三题:(已解决)
答案:(感谢xuanyixx)
x=180-sin^-1*5/13
=180-22.6(round off)
=157.4
tan=opposite/adjacent
tan22.6=15/QR
QR=15/tan22.6
=36.0cm
第四题:(已解决)
答案:(感谢niielle)
cos< PNT=8/17
NP:NT
8:17
4cm:8.5cm
TP用(8.5^2)-(4^2) = TP^2
8.5^2-4^2=56.25^2
squareroot (56.25)=7.5
第五题:(已解决)
It is given that his eye level is 6 m above the horizontal ground.
Calculate the value of y, in m.
答案:(感谢P2PSYSTEM)
6/(tan40)=7.15m
第六题:(已解决)
4x(x + y) - (-x - 3y)^2=
答案:(感谢吸雪鬼)
=4x^2 + 4xy - ( x^2 + 3xy + 3xy + 9y^2)
=4x^2 + 4xy - x^2 - 3xy - 3xy - 9y^2)
=3x^2 - 2xy - 9y^2
第七题:(已解决)
答案:(感谢~地狱王~ & 咻咻)
1.)
[2n(m+2)/(3-n)(3+n)]x3-n/6mn
=m+2/(3+n)(3m)
2.)
2mn+4n / 9-n^2 ÷ 6mn / 3-n
= 2n(m+2) / 3+n(3-n) x 3-n / 6mn
= m+2 / 3+n(3m)
第八题:(已解决)
答案:(感谢niielle & 安琪公主)
1.)
2t=t-1/m-1
t-1=2mt-2t
t-1+2t=2mt
3t=2mt-+1
3t-2mt=1
t(3-2m)=1
t=1/(3-2m)
2.)2t = (t-1)/(m-1)
2t(m-1) = t - 1
2tm - 2t = t -1
2tm - 2t - t = -1
2tm - 3t = -1
t (2m-3) = -1
t = -1/(2m-3)
t = 1/(3-2m)
第九题:(已解决)
答案:(感谢~地狱王~)
1.)
=(y-6)/3-(y-4)/2=1]x6
=2y-12-3y+12=6
=-y=6
=y=-6
2.)
=y-6 / 3 - y-4 / 2 = 1
=2y-12 / 6 - 3y-12 / 6 = 1
=-y = 6
=y = -6
第十题:(已解决)
If the number of participants who participate in only one quiz is 21, find the total number of the participants.
答案:(感谢P2PSYSTEM)
(x+3)+2x=21
x=6
(x+3)+2x+x=27
第十一题:(已解决)
If the data is represented by a pie chart, calculate the maximum difference in the sector angles between any two of the activities.
答案:(感谢niielle )
总共是180min,360°
1min=2°
最大减最小cycling/bowling
100°-40°=60°
第十二题:(已解决)
It is given that the distance of PQ is 10 units.
Find the gradient of PQ.
答案:(感谢安琪公主 & niielle)
1.)
PO=10UNITS
∴op2=pq2-oq2 (三角形毕氏定理)
op2=100-64=36
op=6
y-y1=m(x-x1)
m=(y-y1)/(x-x1)
m=(-8-0))/(-6-0)
m=-4/3
2.)
pq=10
当他是right angle triangle的话
oq=8 pq=10 op=6
gradient= -y intercept
x intercept
=-(-8)
-6
=-8/6
=-4/3
第十三题:(已解决)
It is given that the equation of a straight line which passes through point (0,8) is y = -4x + c.
Find the point of intersection of the straight line and the x-axis.
答案:(感谢niielle)
y=-4x+8
y=0, 0=4x+8
-2=x
(-2,0)
第十三题详细讲解(感谢rainpher)
先找c: y= -4x + c, 放(0,8) 进去,得到 c =8
然后找point of intersection of the straight line and the x-axis: 其实是x-intercept 来的。 at x-intercept, y=0。 把y = 0 放进去 y= -4x +8 , 得到 x = 2 。
所以答案是 (2 , 0)。
第十四题:(已解决)
It is given that m varies inversely with n and m = 20 when n = 2.
Calculate the value of n when m = 5.
答案:(感谢niielle)
m=k
n
20=k/2
40=k
when m=5
5=40/n
n=8
第十四题详细讲解(感谢rainpher)
m varies inversely with n , 意思是 m cx 1/n (ps: 那个 "cx" 其实是proportional 的符号来的 只是我不会放)
m cx 1/n 也就是 m = c/n where c is a constant.
m = 20, n =2, 放进去 m = c/n, 得到 c = 40。 把c 放回去 m = c/n ,得到 m = 40/n。
m = 5, 放进去 m = 40/n , 得到 n = 8, 也是就答案了!
第十五题:(已解决)
(这题求解释下!我不是很明白)
A.)
B.)
C.)
D.)
答案:(感谢niielle & P2PSYSTEM)
1.)
y=kx^2
2=k1^2
2=k
8=k2^2
=2x(2^2)
2.)y=k(x)^2
1=k(1)^2
k=1
y=1(x)^2
AB 錯
y=k(x)^2
2=k(1)^2
k=2
y=2(x)^2
c 錯
ANSWER: D
第15题详细讲解(感谢raceangelz)
問題是說, 以下哪一個代表 那個 alpha 的意思是 proportional
就是說,你可以把它們寫成一個equation
y=k(x^2)
where k is constant
從D,當x=1 的時候, y = k(1^2 )
y= k(1)
x=2, y= k (2^2)
y= k(4)
x=3, y=k(3^2)
y=k(9)
x=4, y= k(4^2)
y= k(16)
當你把 k=2 substitute 進去 那4個equation,你就得到
x=1,y = 2(1) = 2
x=2,y= 2(4) =8
x=3,y= 2(9)= 18
x=4,y= 2(16) =32
第十六题:(已解决)
答案:(感谢niielle)
9m^(4x2) x 4n^(halfx2) / m^3
9m^8 x 4n^1 /m^3
9m^(8-3) x 4n
36n(m^5)
感谢所有参与的人~我在这里谢谢大家啦 |
|